Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Med Sci ; 41(6): 1096-1104, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1404664

ABSTRACT

OBJECTIVE: To study data about SARS-CoV-2 virus shedding and clarify the risk factors for prolonged virus shedding. METHODS: Data were retrospectively collected from adults hospitalized with laboratory-confirmed coronavirus disease-19 (COVID-19) in Wuhan Union Hospital. We compared clinical features among patients with prolonged (a positive SARS-CoV-2 RNA on day 23 after illness onset) and short virus shedding and evaluated risk factors associated with prolonged virus shedding by multivariate regression analysis. RESULTS: Among 238 patients, the median age was 55.5 years, 57.1% were female, 92.9% (221/238) were administered with arbidol, 58.4% (139/238) were given arbidol in combination with interferon. The median duration of SARS-CoV-2 virus shedding was 23 days (IQR, 17.8-30 days) with a longest one of 51 days. The patients with prolonged virus shedding had higher value of D-dimer (P=0.002), IL-6 (P<0.001), CRP (P=0.005) and more lobes lung lesion (P=0.014) on admission, as well as older age (P=0.017) and more patients with hypertension (P=0.044) than in those the virus shedding less than 23 days. Multivariate regression analysis revealed that prolonged viral shedding was significantly associated with initiation arbidol >8 days after symptom onset [OR: 2.447, 95% CI (1.351-4.431)], ≥3 days from onset of symptoms to first medical visitation [OR: 1.880, 95% CI (1.035-3.416)], illness onset before Jan. 31, 2020 [OR: 3.289, 95% CI (1.474-7.337)]. Arbidol in combination with interferon was also significantly associated with shorter virus shedding [OR: 0.363, 95% CI (0.191-0.690)]. CONCLUSION: Duration of SARS-CoV-2 virus shedding was long. Early initiation of arbidol and arbidol in combination with interferon as well as consulting doctor timely after illness onset were helpful for SARS-CoV-2 clearance.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/virology , Indoles/administration & dosage , SARS-CoV-2 , Virus Shedding , Adult , Aged , COVID-19/epidemiology , China/epidemiology , Cohort Studies , Female , Hospitalization , Humans , Interferons/administration & dosage , Logistic Models , Male , Middle Aged , Multivariate Analysis , Pandemics , RNA, Viral/analysis , Retrospective Studies , Risk Factors , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Time Factors , Virus Shedding/drug effects
2.
Chin Med J (Engl) ; 134(8): 944-953, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1165520

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. In this study, we aimed to identify the risk factors for severe COVID-19 to improve treatment guidelines. METHODS: A multicenter, cross-sectional study was conducted on 313 patients hospitalized with COVID-19. Patients were classified into two groups based on disease severity (nonsevere and severe) according to initial clinical presentation. Laboratory test results and epidemiological and clinical characteristics were analyzed using descriptive statistics. Univariate and multivariate logistic regression models were used to detect potential risk factors associated with severe COVID-19. RESULTS: A total of 289 patients (197 nonsevere and 92 severe cases) with a median age of 45.0 (33.0, 61.0) years were included in this study, and 53.3% (154/289) were male. Fever (192/286, 67.1%) and cough (170/289, 58.8%) were commonly observed, followed by sore throat (49/289, 17.0%). Multivariate logistic regression analysis suggested that patients who were aged ≥ 65 years (OR: 2.725, 95% confidence interval [CI]: 1.317-5.636; P = 0.007), were male (OR: 1.878, 95% CI: 1.002-3.520, P = 0.049), had comorbid diabetes (OR: 3.314, 95% CI: 1.126-9.758, P = 0.030), cough (OR: 3.427, 95% CI: 1.752-6.706, P < 0.001), and/or diarrhea (OR: 2.629, 95% CI: 1.109-6.231, P = 0.028) on admission had a higher risk of severe disease. Moreover, stratification analysis indicated that male patients with diabetes were more likely to have severe COVID-19 (71.4% vs. 28.6%, χ2 = 8.183, P = 0.004). CONCLUSIONS: The clinical characteristics of those with severe and nonsevere COVID-19 were significantly different. The elderly, male patients with COVID-19, diabetes, and presenting with cough and/or diarrhea on admission may require close monitoring to prevent deterioration.


Subject(s)
COVID-19/diagnosis , Adult , COVID-19/pathology , China/epidemiology , Comorbidity , Cough , Cross-Sectional Studies , Diarrhea , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
3.
Curr Med Sci ; 41(1): 51-57, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1084616

ABSTRACT

Coronavirus disease 2019 (COVID-19) occurs in the influenza season and has become a global pandemic. The present study aimed to examine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infection with influenza A virus (IAV) in an attempt to provide clues for the antiviral interventions of co-infected patients. We described two patients who were co-infected with SARS-CoV-2 and IAV treated at Wuhan Union Hospital, China. In addition, we performed a review in PubMed, Web of Science and CNKI (from January 1 up to November 1, 2020) with combinations of the following key words: "COVID-19, SARS-COV-2, influenza A and co-infection". A total of 28 co-infected patients were enrolled in the analysis. Of the 28 patients, the median age was 54.5 years (IQR, 34.25-67.5) and 14 cases (50.0%) were classified as severe types. The most common symptoms were fever (85.71%), cough (82.14%) and dyspnea (60.71%). Sixteen patients had lymphocytopenia on admission and 23 patients exhibited abnormal radiological changes. The median time from symptom onset to hospital admission was 4 days (IQR, 3-6), and the median time of hospital stay was 14 days (IQR, 8.5-16.75). In conclusion, patients with SARS-COV-2 and IAV co-infection were similar to those infected with SARS-COV-2 alone in symptoms and radiological images. SARS-COV-2 co-infection with IAV could lead to more severe clinical condition but did not experience longer hospital stay compared with patients infected with SARS-COV-2 alone.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Influenza A virus/isolation & purification , Influenza, Human/epidemiology , SARS-CoV-2/isolation & purification , Adult , Aged , Female , Humans , Length of Stay , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
4.
Clin Gastroenterol Hepatol ; 18(8): 1753-1759.e2, 2020 07.
Article in English | MEDLINE | ID: covidwho-613156

ABSTRACT

BACKGROUND & AIMS: We compared clinical, laboratory, radiological, and outcome features of patients with SARS-CoV-2 infection (COVID-19) with pneumonia, with vs without diarrhea. METHODS: We performed a retrospective, single-center analysis of 84 patients with SARS-CoV-2 pneumonia in Wuhan Union Hospital, China, from January 19 through February 7, 2020. Cases were confirmed by real-time reverse-transcriptase PCR of nasal and pharyngeal swab specimens for SARS-CoV-2 RNA. Blood samples were analyzed for white blood cell count, lymphocyte count, alanine aminotransferase, creatine kinase, lactate dehydrogenase, D-dimer, C-reactive protein, and in some cases, immunoglobulins, complement, lymphocyte subsets, and cytokines. Virus RNA was detected in stool samples by real-time PCR. RESULTS: Of the 84 patients with SARS-CoV-2 pneumonia, 26 (31%) had diarrhea. The duration of fever and dyspnea in patients with diarrhea was significantly longer than those without diarrhea (all P < .05). Stool samples from a higher proportion of patients with diarrhea tested positive for virus RNA (69%) than from patients without diarrhea (17%) (P < .001). As of February 19, a lower proportion of patients with diarrhea had a negative result from the latest throat swab for SARS-CoV-2 (77%) than patients without diarrhea (97%) (P = .010), during these patients' hospitalization. Of 76 patients with a negative result from their latest throat swab test during hospitalization, a significantly higher proportion of patients with diarrhea had a positive result from the retest for SARS-CoV-2 in stool (45%) than patients without diarrhea (20%) (P = .039). CONCLUSIONS: At a single center in Wuhan, China, 31% of patients with SARS-CoV-2 pneumonia had diarrhea. A significantly higher proportion of patients with diarrhea have virus RNA in stool than patients without diarrhea. Elimination of SARS-CoV-2 from stool takes longer than elimination from the nose and throat.


Subject(s)
Betacoronavirus/isolation & purification , Carrier State/virology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Diarrhea/epidemiology , Diarrhea/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Adult , Aged , Blood Cell Count , Blood Chemical Analysis , COVID-19 , China , Diarrhea/pathology , Feces/virology , Female , Hospitals , Humans , Male , Middle Aged , Nasal Mucosa/virology , Pandemics , Pharynx/virology , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2 , Young Adult
5.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2265-2274, 2020 May.
Article in Chinese | MEDLINE | ID: covidwho-398790

ABSTRACT

In December 2019, an outbreak of viral pneumonia began in Wuhan, Hubei Province, which caused the spread of infectious pneumonia to a certain extent in China and neighboring countries and regions, and triggered the epidemic crisis. The coronavirus disease 2019(COVID-19) is an acute respiratory infectious disease listed as a B infectious disease, which is managed according to standards for A infectious disease. Traditional Chinese medicine and integrated traditional Chinese and Western medicine have played an active role in the prevention and control of this epidemic. China's ethnomedicine has recognized infectious diseases since ancient times, and formed a medical system including theory, therapies, formula and herbal medicines for such diseases. Since the outbreak of the COVID-19 epidemic, Tibet Autonomous Region, Qinghai Province, Inner Mongolia Autonomous Region, Xinjiang Uygur Autonomous Region and Chuxiong Autonomous Prefecture of Yunnan, Qiandongnan Autonomous Prefecture of Guizhou have issued the prevention and control programs for COVID-19 using Tibetan, Mongolian, Uygur, Yi and Miao medicines. These programs reflect the wisdom of ethnomedicine in preventing and treating diseases, which have successfully extracted prescriptions and preventive measures for the outbreak of the epidemic from their own medical theories and traditional experiences. In this paper, we summarized and explained the prescriptions and medicinal materials of ethnomedicine in these programs, and the origin of Tibetan medicine prescriptions and Mongolian medicine prescriptions in ancient books were studied. These become the common characteristics of medical prevention and treatment programs for ethnomedicine to formulate therapeutic programs under the guidance of traditional medicine theories, recommend prescriptions and prevention and treatment methods with characteristics of ethnomedicine, and focus on the conve-nience and standardization. However, strengthening the support of science and technology and the popularization to the public, and improving the participation of ethnomedicine in national public health services and the capacity-building to deal with sudden and critical diseases are key contents in the development of ethnomedicine in the future.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , COVID-19 , China , Humans , Medicine, Traditional , Pandemics , SARS-CoV-2 , Tibet , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL